Dynamical heterogeneity in a vapor-deposited polymer glass.
نویسندگان
چکیده
Recently, there has been great interest in "ultrastable" glasses formed via vapor deposition, both because of emerging engineering applications of these materials (e.g., active layers in light-emitting diodes and photovoltaics) and, theoretically, as materials for probing the equilibrium properties of glassy materials below their glass transition, based on the conjecture that these materials are equivalent to glassy materials aged over astronomical time scales. We use molecular dynamics simulations to examine the properties of ultrastable vapor-deposited and ordinary polymer glasses. Based on the difference in the energy of the deposited and ordinary films, we estimate the effective cooling rate for the vapor deposited films to be 1 to 3 orders of magnitude larger than that of the ordinary film, depending on the deposition temperature. Similarly, we find an increase in the average segmental relaxation time of the vapor-deposited film compared to the ordinary glass. On the other hand, the normal mode spectrum is essentially identical for the vapor-deposited and the ordinary glass film, suggesting that the high-frequency dynamics should be similar. In short, the segmental relaxation dynamics of the polymer vapor-deposited glass are consistent with those of an ordinary polymer glass with a somewhat slower effective cooling rate. Of course, one would expect a larger effect on dynamics approaching the experimental glass transition, where the cooling rates are much slower than accessible in simulation. To more precisely probe the relationship between the dynamics of these glasses, we examine dynamical heterogeneity within the film. Due to the substantial mobility gradient in the glassy films, we find that it is crucial to distinguish the dynamics of the middle part of the film from those of the entire film. Considering the film as a whole, the average dynamical heterogeneity is dominated by the mobility gradient, and as a consequence the heterogeneity is nearly indistinguishable between the ordinary and vapor deposited glass films. In contrast, in the middle part of the film, where there is almost no mobility gradient, we find the dynamical heterogeneity within the deposited film is somewhat larger than that of the ordinary film at the same temperature. We further show that the scale of the interfacial region grows on cooling in the equilibrium film, but this trend reverses in the glass state. We attribute this reversal in part to a shrinking ratio of the relaxation time in the middle of the film to that of the interfacial layer in the non-equilibrium state. The dynamics in this mobile interfacial layer for the ordinary and deposited film are nearly the same, suggesting that the interfacial region is always in a near-equilibrium state. These results emphasize the importance of distinguishing between interfacial and internal relaxation processes in this emerging class of materials.
منابع مشابه
Characterization of polymer-like thin films deposited on silicon and glass substrates using PECVD method
Polymer-like thin films have been deposited on glass and silicon substrates at temperatures in the range 300–673 K, by a plasma enhanced chemical vapor deposition (PECVD) method using thiophene (C H S) as a precursor. A power with radio 4 4 frequency (13.56 MHz) was applied for the ignition of the plasma, and hydrogen and Ar(argon) were used as the bubbler and the carrier gases, respectively. I...
متن کاملProbe Size Dependent Rotational Dynamics in Polymer by Single Molecule Spectroscopy
1. Introduction A drastic slowdown of the dynamics of a liquid close to its glass transition temperature is observed in many different materials ranging from simple molecular glass formers to complex synthetic polymers. The non-exponential relaxation dynamics and non-Arrhenius type of temperature dependence of mean relaxation times has been observed by many ensemble techniques such as EPR, NMR ...
متن کاملRoles of individual and cooperative motions of molecules in glass-liquid transition and crystallization of toluene.
Deeply supercooled fragile liquid is known to be dynamically heterogeneous, where super Arrhenius behavior of shear viscosity and alpha and beta relaxation processes have been observed. To clarify origins of these behaviors, we have investigated correlations between microscopic molecular diffusion and macroscopic hydrodynamics of vapor-deposited toluene films by using time-of-flight secondary i...
متن کاملVapor-deposited alcohol glasses reveal a wide range of kinetic stability.
In situ AC nanocalorimetry was used to characterize vapor-deposited glasses of six mono- and di-alcohol molecules. Benzyl alcohol glasses with high kinetic stability and decreased heat capacity were prepared. When annealed above the glass transition temperature Tg, transformation of these glasses into the supercooled liquid took 103.4 times longer than the supercooled liquid relaxation time (τα...
متن کاملCuInS2 Films Deposited by Aerosol-Assisted Chemical Vapor Deposition Using Ternary Single-Source Precursors
Photovoltaics are an important power source for both off-grid terrestrial and extraterrestrial use. Thin film polycrystalline materials have been studied extensively for solar cell applications partially because their polycrystalline nature allows their formation on many different types of substrates including glass, metal foil, and lightweight flexible polymer substrates. For example, monolith...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of chemical physics
دوره 146 20 شماره
صفحات -
تاریخ انتشار 2017